IVO'S NOTES - 4/24/07 1

Discrete time M/M/1. or birth-and-death MC.
MC with states {0,1,2,} and
$P_{i,i+1} = a_0$, $P_{i,i-1} = a_2$, $P_{i,i} = 1-a_0-a_2 = :a_1$
$P_{0,1} = a_0$, $P_{0,0} = b_1(=1-a_0)$ Assume $a_0 < a_2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Example MMI with arrival rate I and service rate on Take Δ ? o small. Then consider # jobs in system at t=0, Δ, 2Δ, In interval Δ there is an arrival with prob Δ λ' =: ao and a departure with prob Δ μ =: az
Let Pi denote steady state prob. What is Pi?
Note: Pi - expected # visits to j before first return Pi to i, given that P starts in i.
Define t' = expected # visits to it & before first veturn to i, given that P starts in i.
Because transition prob are homogeneous and P is skip-free to the right, we have that
r; does not depend on i. So: r; = r; Let r:= r
Further: P _{i+1} = P _i r' = P _i r = = P _o r' ; i=0,1, What is r? I.e. how to determine r? > Note: since P _i > 0, i it follows rel
What is r? I.e. how to determine r: > Note: since 1:30,1

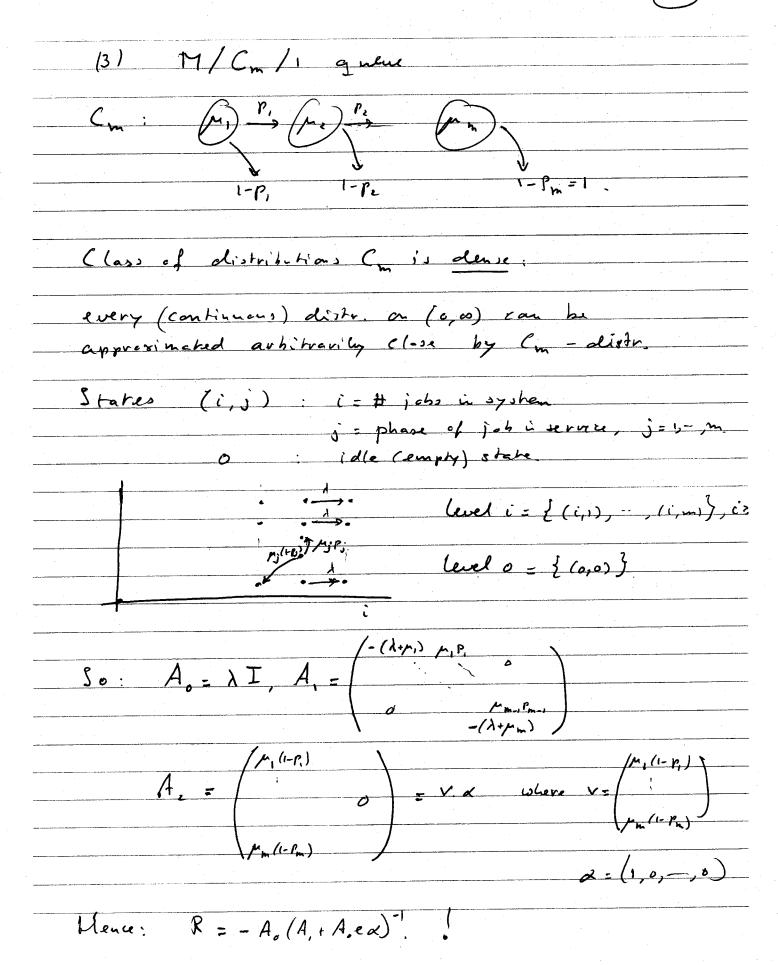
	ce each excursion reaching it first has to pass it k have:
Y	(k) $(k-1)$ (k) $(k-1)$ k $= r$ $r = r$ $r = r$
Con	dition on the last state visited hefore visiting its
	get:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
50	since t'er,
	$= a_0 + ra_1 + r^2 a_2$ (1).
	characterized as smallest non-negative sol. of (1):
<u> </u>	Characterizad as single
PI	: Let x be smallest non-negative sol. of (1).
Loot	to find x? Consider iteration
HOW	$\chi(n+1) = a_0 + \chi(n) a_1 + \chi(n) a_2$, $\chi(0) = 0$
—	×(n) 1 and ×(n) ≤ v (by induction).
- hen	$\lim_{n \to \infty} X(n) = X(\infty)$ with $e \times 1 \times $
<u>، د</u>	non x(n) =: x(0) more asi non (ess or equal to any nonnegative sol. of (1).
	·
	$R: \times \times \times (\infty)$, and $\times \times \times$.
	ne r(K)(n) = expected # visits to ithe before finit
Defi	, II I Datan
- And the state of	u (
Thus	$t^{(k)}(n) \uparrow r^{(k)}$ as $n \to \infty$.
Also	$\frac{n}{r(k)} = \sum_{i,i+k-1}^{(m)} \frac{n}{r(n-m)} \leq \sum_{i,i+k-1}^{(m)} \frac{n}{r(n)} \frac{(k-1)}{r(n)}$
	r = c + i + k - 1 $m = 0 + i + k - 1$ $m = 0 + i + k - 1$
and the state of t	m-steps transition proh- of P.
	M-archa light

Now r (0) = 0 < x(0)
$Suppose r''(n) \leq x(n)$
Suppose $r^{(1)}(n) \leq x(n)$. Then $r^{(1)}(n+1) = a_0 + r^{(1)}(n) a_1 + r^{(2)}(n) a_2$
$\leq q_0 + r^{(i)}(n) q_1 + (r^{(i)}(n))^2 q_2$
$\leq a_{1} + \chi(n) a_{1} + (\chi(n))^{2} a_{2}$
- X(n+1)
Since r''(n) 1 r'')=, we have V = x and thus r=x [
This also gives a mean to determine t:
$let r(0) = 0$, $r(n+1) = a_0 + r(n) a_1 + r(n) a_2$, $n = 0, 1, -$
Then r(n) 1 r, as n -> n.
Remark: we only used homogeneous transition prob.
Hence it also works for
P = (b, a, a, a, b) = 1 - 2ai
$P = \begin{pmatrix} b, a, a & 0 \\ b, a, a & 0 \\ b, a, a & 0 \end{pmatrix}, \sum_{i=0}^{g-1} b_{i} = 1 - \sum_{i=0}^{g-1} a_{i}$
"G/M/1" MC's (i.e. embedded MC of the G/M/1)
Then ris me minimal non-negative solution of
r = a + ra + ra + · - = E r'a;
(=0

Quasi birth	-and-death process (GBD) or M/M/1-type madel
state space:		
	m states "level i"	
m	"level i"	
2 - ,	•	
1 +	<u> </u>	
1 2	ì	
Irve ducibel	MC with states	race m
{(0,1),,(2,m), (1,1), (1,m),.	. }
tevel o	Level I	
Can A Amount	in prob metrix	
•		* .
15 13°	10 A, A.	repeating block structure
		All blocks of size mxm
0	$A_{2}A_{1}A_{2}$	A II DIOCKS
1 0	v A. A. A.	
Note that	Az+A,+Ao is also	MC (i.e. transition prob. mato
This MC	describe behavior w	ithin Level (between pheses)
		A + A + A has 1 communication

We have $R = R \cdot R = \dots = (R^{(i)})^k = R^k$	
and (condition on last stake visited before visiting (i11.6))	
$R' = A_0 + R'A_1 + R'A_2$	
30 R = A, + RA, + R2 A, (2).	
Just as before (same proof!): Ris minimal non-negative	
and R cam be determined by iteration:	
$R(0)=0$, $R(n+1)=A_0+R(n)A_1+(R(n))^2A_2$, $n=c,1,2,$ Then $R(n) \uparrow R$ as $n \to \infty$. (3)	
Note: alternative: $R(I-A_1) = A_0 + R^2A_2$	
so R = (A. + K'A.) (J-A.) exists = I+A. + A.+	
So: R(0)=0, R(m+1) = (A.+ R(m)A.)(I-A,)", n=0,10-	
Usually converges faster.	
Finally: Po follows from boundary egs.	
P. B. + P. B. = P.	
P_=PR PoBo + RB10] = Po RB10[j,L) = prob. that P returns to (0,L) returns to (0,L) returns to (0,L))
embedded on well starting in (0, j	7

Note: It also we	orks for	m	ove complex	
		7	boundary	behavior.
P = B ₀₀ A ₀ A ₀ A ₀ B ₂₀ A ₂ A ₁ A ₀		B. B., B. A.	A. A.	Boinen Boinen A: men
* Then: Rism		egative sol	ution of	
and the second of the second o	R'A:			<u> </u>
* Prift condition:	TA,e < T	T (A, 12 A, +) e = 17 &	iA;e
øv:	π Σ (1-ί).	A.e < 0.		
	mean ste	prize.		
			<u></u> .	
				:
				· .
		·		
				· ·


Now: MC in continuous time (MP)
generator $Q = \begin{bmatrix} B_{00} & A_{0} \\ A_{1} & A_{2} & A_{3} \\ A_{2} & A_{3} & A_{4} \end{bmatrix}$
(note that A, + A, + A, is also generator)
To find $P = (P_0, P_1, -)$ consider $P = (P_0, P_1, -)$ consider $P = (P_0, P_1, -)$ consider
P:= I + A Q where D >0, sufficiently small such that P>0.
Then P is stochastic metrix and P and & have the same equilibrium distr: p = p P &> p = p(I+AQ) (> 0 = APQ >> 0 = PQ
This also implies that P is positive recurrent iff Q is positive recu
$P = \Delta A_{2} I + \Delta A_{0} \Delta A_{0}$ $\Delta A_{1} I + \Delta A_{1} \Delta A_{0}$ $\Delta A_{2} I + \Delta A_{1} \Delta A_{0}$
Drift condition: $\pi.\Delta A_0 e < \pi.\Delta A_0 e$, where $\pi(I + \Delta(A_0 + A_0 + A_0)) = i$
Pi : Pi - Po Ri where Rismin non-neg sol. of:
$R = \Delta A_0 + R(I + \Delta A_1) + R^2 \Delta A_2$
0 = A0 + RA, + RA2.
Determine R via (3) or via: $R = (A_0 + R^2 A_2) (-A_1)^{-1}$

Special cases of MIMII-type (or GBD) models
(1) $A_{2} = V \cdot \alpha = \begin{pmatrix} V_{1} & \alpha \\ V_{2} & \alpha \\ V_{m} & \alpha \end{pmatrix}, \alpha = (\alpha_{1}, \dots, \alpha_{m}), \alpha = 1$ $V = \begin{pmatrix} V_{1} \\ V_{m} \end{pmatrix}$
so rows of Az are the same upto scaling.
This means: given that P jumps to a lower level, the entrance distribution is always the same, i.e. it does not depend on which state P came from
What is entrence distr.? &! Note that: V; is prob. that P jumps i-1 i i-1 i
5. $R = A_0 + RA_1 + R^2A_2 \rightarrow R[J-A,-A,e\alpha] = A_0$ $R = A_0[J-A,-A,e\alpha]$ $R = A_0[J-A,-A,e\alpha]$
$ \begin{array}{ccc} R A_0 e & R & R & A_0 \left[I - (A_1 + A_0 e \alpha) \right] \\ \end{array} $ (in continuous time: $R = A_0 (A_1 + A_0 e \alpha)^{-1}$)
Alternative derivation: Az=va
$P_i = P_{i-1}A_0 + P_iA_1 + P_{i+1}A_2 = P_{i-1}A_0 + P_iA_1 + P_{i+1}VX$ Balance flow between level i and level i+1:
Pi Aoe = Pin Aze = Pin V
Hence $P_i = P_{i-1}A_0 + P_iA_1 + P_iA_0e \propto$
$P_i = P_{i-1} \underbrace{A_0 \left[I - A_1 - A_0 e \kappa \right]}_{R}$

(2) $A_{o} = \omega \cdot \beta = \begin{pmatrix} \omega_{i} \\ \vdots \\ \omega_{m} \end{pmatrix} (\beta_{i}, \beta_{m}), \beta \in \mathbb{N}$
This means : if P jumps to higher level, then the
entrance distr. is always the same, i.e., it does
not depend on which state P come from
(note that his is the prob. that P jump. to higher level from (i,j.
This implies:
This implies: $R(j,l) = (1-w_j) \cdot o + w_j \cdot \sum_{k=1}^{\infty} \beta(k,l)$ $R(j,l) = (1-w_j) \cdot o + w_j \cdot \sum_{k=1}^{\infty} \beta(k,l)$
only depends on t
where S(k,l) = expected # visits to (i+1, l) before fint
return to level i, given that P starts in (i+1, k)
So Ris of the form:
R = w.a for some vector a=(a,,,,am)
Alternative derivation: look at iteration scheme
$R(n+1) = A_0 + R(n)A_1 + R(n)A_2 \qquad A_2 = \omega. P$
Then R(1) = Ao, so it is of the form R(1) = w.a,
$(so R^2(1) = (a, \omega) \cdot \omega a_1)$
and $R(2) = \omega \left[\beta + \alpha_1 A_1 + (\alpha_1 \omega) \alpha_1 A_2 \right] = \omega \alpha_2$
= 1 4 2
R(n) = wan TR, so also R is of the form R= w.a.
Thus Ri = (aw)i-1 R = yi-1 R where y := aw
50 Pi = PoRi = ni-1 P. R = ni-1 P. , i=1,2,
and n is unique root on (0,1) of: det (A,+(A,-I)n+A,n2)=0
or determine a via: an = B + an A + (an w) an Az, n=0,, ao=0

	grene with threshold jockeying
\(\frac{1}{2}\)	1n-6) If difference between (ongest and shortest greene > T, 1n-6) then job jumps from (ongest to shortest greene.
	langest and shortest green > T,
Shorre	then job jump from (ongest
que	to shortest queux.
States 6	(m,n) where m - leight of shortest gu
	n = length of longest gen
n	(30 m = n)
7 /	(30 m < n)
1 /	
	m
	m
Levels?	Take (evel in = { (m-T, n), (n-Tsi, n),, (n
•	
and	1 put states (m, n) will n < T into set of home sta
-÷/	
Then	- l nonzevo row.
Then A.	= (0 ; any 1 nonzero row.
Then A.	= (0010); any 1 nonzero row!
Then A. Hence P	
	$n = (P(n-T,n),,P(n,n)) = \eta^{n-T} P_{T}, n = T, T+1$

So P(V _{L+2}) = p ² P(V _c)
Also p(m+1,n+1) = y.p(m,n) and thus
P(V1+2)= + P(V1)
Conclusion: $\eta = \rho^2$
(2) Langest greve with threshold addition/rejection
1) serve longer greve It diff between longer green and sharkest green > T,
sharkest greene > T,
Shorkest greene > T, (threshold \(\) \(\) (threshold addition) then: (i) add job to shorkest green trejection) \(\) \(\) \(\) (ii) reject job in fongest que
States (m, n),
m = length shorkest queue n = length (on gest queue
(0,0,i) = queus are empty, server idle.
Levels? Take level m = { (m,m), (m, m+1),, (m, m+T) }
Then $A_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ionly I non-seve row!
Hence $R = -A_o(A_1 + A_o e \alpha)^{-1}.$

